Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118.971
Filtrar
1.
Mol Biol Rep ; 51(1): 566, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656625

RESUMEN

BACKGROUND: Escherichia coli is the most common etiological agent of urinary tract infections (UTIs). Meanwhile, plasmid-mediated quinolone resistance (PMQR) is reported in E. coli isolates producing extended-spectrum ß-lactamases (ESBLs). Furthermore, the reservoirs and mechanisms of acquisition of uropathogenic Escherichia coli (UPEC) strains are poorly understood. On the other hand, UTIs are common in pregnant women and the treatment challenge is alarming. METHODS AND RESULTS: In the present study, 54 pregnant women with acute cystitis were included. A total of 108 E. coli isolates, 54 isolates from UTI and 54 isolates from faeces of pregnant women (same host) were collected. In the antimicrobial susceptibility test, the highest rate of antibiotic resistance was to nalidixic acid (77%, 83/108) and the lowest rate was to imipenem (9%, 10/108). Among the isolates, 44% (48/108) were ESBLs producers. A high frequency of PMQR genes was observed in the isolates. The frequency of PMQR genes qnrS, qnrB, aac(6')-Ib-cr, and qnrA was 58% (63/108), 21% (23/108), 9% (10/108), and 4% (4/108), respectively. Meanwhile, PMQR genes were not detected in 24% (20/85) of isolates resistant to nalidixic acid and/or fluoroquinolone, indicating that other mechanisms, i.e. chromosomal mutations, are involved in resistance to quinolones, which were not detected in the present study. In ESBL-producing isolates, the frequency of PMQR genes was higher than that of non-ESBL-producing isolates (81% vs. 53%). Meanwhile, UTI and faeces isolates mainly belonged to phylogenetic group B2 (36/54, 67% and 25/54, 46%, respectively) compared to other phylogenetic groups. In addition, virulence factors and multidrug-resistant (MDR) were mainly associated with phylogenetic group B2. However, predominant clones in faeces were not found in UTIs. Rep-PCR revealed the presence of 85 clones in patients. Among the clones, 40 clones were detected only in faeces (faeces-only), 35 clones only in UTI (UTI-only) and 10 clones in both faeces and UTI (faeces-UTI). We found that out of 10 faeces-UTI clones, 5 clones were present in the host's faeces flora. CONCLUSION: This study revealed a high rate of resistance to the quinolone nalidixic acid and a widespread distribution of PMQR genes in MDR E. coli strains producing ESBLs. The strains represented virulence factors and phylogenetic group B2 are closely associated with abundance in UTI and faeces. However, the predominant clones in faeces were not found in UTIs and it is possible that rep-PCR is not sufficiently discriminating clones.


Asunto(s)
Antibacterianos , Cistitis , Infecciones por Escherichia coli , Escherichia coli , Heces , Pruebas de Sensibilidad Microbiana , Plásmidos , Quinolonas , beta-Lactamasas , Humanos , Femenino , beta-Lactamasas/genética , Plásmidos/genética , Heces/microbiología , Quinolonas/farmacología , Embarazo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/efectos de los fármacos , Adulto , Antibacterianos/farmacología , Cistitis/microbiología , Farmacorresistencia Bacteriana/genética , Prevalencia , Infecciones Urinarias/microbiología , Ácido Nalidíxico/farmacología
2.
Commun Biol ; 7(1): 499, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664513

RESUMEN

Bacterial cooperation and antagonism mediated by secretion systems are among the ways in which bacteria interact with one another. Here we report the discovery of an antagonistic property of a type IV secretion system (T4SS) sourced from a conjugative plasmid, RP4, using engineering approaches. We scrutinized the genetic determinants and suggested that this antagonistic activity is independent of molecular cargos, while we also elucidated the resistance genes. We further showed that a range of Gram-negative bacteria and a mixed bacterial population can be eliminated by this T4SS-dependent antagonism. Finally, we showed that such an antagonistic property is not limited to T4SS sourced from RP4, rather it can also be observed in a T4SS originated from another conjugative plasmid, namely R388. Our results are the first demonstration of conjugative T4SS-dependent antagonism between Gram-negative bacteria on the genetic level and provide the foundation for future mechanistic studies.


Asunto(s)
Conjugación Genética , Plásmidos , Sistemas de Secreción Tipo IV , Plásmidos/genética , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
3.
BMC Microbiol ; 24(1): 143, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664628

RESUMEN

BACKGROUND: Broiler chickens are frequently colonized with Extended-Spectrum Beta-Lactamase- (ESBL-) and plasmid mediated AmpC Beta-Lactamase- (pAmpC-) producing Enterobacterales, and we are confronted with the potential spread of these resistant bacteria in the food chain, in the environment, and to humans. Research focused on identifying of transmission routes and investigating potential intervention measures against ESBL- and pAmpC- producing bacteria in the broiler production chain. However, few data are available on the effects of cleaning and disinfection (C&D) procedures in broiler stables on ESBL- and pAmpC- producing bacteria. RESULTS: We systematically investigated five broiler stables before and after C&D and identified potential ESBL- and pAmpC- colonization sites after C&D in the broiler stables, including the anteroom and the nearby surrounding environment of the broiler stables. Phenotypically resistant E. coli isolates grown on MacConkey agar with cefotaxime were further analyzed for their beta-lactam resistance genes and phylogenetic groups, as well as the relation of isolates from the investigated stables before and after C&D by whole genome sequencing. Survival of ESBL- and pAmpC- producing E. coli is highly likely at sites where C&D was not performed or where insufficient cleaning was performed prior to disinfection. For the first time, we showed highly related ESBL-/pAmpC- producing E. coli isolates detected before and after C&D in four of five broiler stables examined with cgMLST. Survival of resistant isolates in investigated broiler stables as well as transmission of resistant isolates from broiler stables to the anteroom and surrounding environment and between broiler farms was shown. In addition, enterococci (frequently utilized to detect fecal contamination and for C&D control) can be used as an indicator bacterium for the detection of ESBL-/pAmpC- E. coli after C&D. CONCLUSION: We conclude that C&D can reduce ESBL-/pAmpC- producing E. coli in conventional broiler stables, but complete ESBL- and pAmpC- elimination does not seem to be possible in practice as several factors influence the C&D outcome (e.g. broiler stable condition, ESBL-/pAmpC- status prior to C&D, C&D procedures used, and biosecurity measures on the farm). A multifactorial approach, combining various hygiene- and management measures, is needed to reduce ESBL-/pAmpC- E. coli in broiler farms.


Asunto(s)
Proteínas Bacterianas , Pollos , Desinfección , Escherichia coli , Granjas , beta-Lactamasas , Animales , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Pollos/microbiología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Desinfección/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/transmisión , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , Antibacterianos/farmacología , Filogenia , Plásmidos/genética , Tipificación de Secuencias Multilocus , Secuenciación Completa del Genoma
4.
Elife ; 122024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622998

RESUMEN

Neonatal meningitis is a devastating disease associated with high mortality and neurological sequelae. Escherichia coli is the second most common cause of neonatal meningitis in full-term infants (herein NMEC) and the most common cause of meningitis in preterm neonates. Here, we investigated the genomic relatedness of a collection of 58 NMEC isolates spanning 1974-2020 and isolated from seven different geographic regions. We show NMEC are comprised of diverse sequence types (STs), with ST95 (34.5%) and ST1193 (15.5%) the most common. No single virulence gene profile was conserved in all isolates; however, genes encoding fimbrial adhesins, iron acquisition systems, the K1 capsule, and O antigen types O18, O75, and O2 were most prevalent. Antibiotic resistance genes occurred infrequently in our collection. We also monitored the infection dynamics in three patients that suffered recrudescent invasive infection caused by the original infecting isolate despite appropriate antibiotic treatment based on antibiogram profile and resistance genotype. These patients exhibited severe gut dysbiosis. In one patient, the causative NMEC isolate was also detected in the fecal flora at the time of the second infection episode and after treatment. Thus, although antibiotics are the standard of care for NMEC treatment, our data suggest that failure to eliminate the causative NMEC that resides intestinally can lead to the existence of a refractory reservoir that may seed recrudescent infection.


Asunto(s)
Infecciones por Escherichia coli , Meningitis , Recién Nacido , Humanos , Escherichia coli/genética , Virulencia/genética , Células Clonales
5.
Cell Rep ; 43(4): 114053, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38578824

RESUMEN

In the search for much-needed new antibacterial chemical matter, a myriad of compounds have been reported in academic and pharmaceutical screening endeavors. Only a small fraction of these, however, are characterized with respect to mechanism of action (MOA). Here, we describe a pipeline that categorizes transcriptional responses to antibiotics and provides hypotheses for MOA. 3D-printed imaging hardware PFIboxes) profiles responses of Escherichia coli promoter-GFP fusions to more than 100 antibiotics. Notably, metergoline, a semi-synthetic ergot alkaloid, mimics a DNA replication inhibitor. In vitro supercoiling assays confirm this prediction, and a potent analog thereof (MLEB-1934) inhibits growth at 0.25 µg/mL and is highly active against quinolone-resistant strains of methicillin-resistant Staphylococcus aureus. Spontaneous suppressor mutants map to a seldom explored allosteric binding pocket, suggesting a mechanism distinct from DNA gyrase inhibitors used in the clinic. In all, the work highlights the potential of this platform to rapidly assess MOA of new antibacterial compounds.


Asunto(s)
Antibacterianos , Girasa de ADN , Escherichia coli , Inhibidores de Topoisomerasa II , Inhibidores de Topoisomerasa II/farmacología , Girasa de ADN/metabolismo , Girasa de ADN/genética , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Transcripción Genética/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana
6.
ACS Synth Biol ; 13(4): 1093-1099, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38593047

RESUMEN

RNA synthetic biology tools have primarily been applied in E. coli; however, many other bacteria are of industrial and clinical significance. Thus, the multicolor fluorogenic aptamer Pepper was evaluated in both Gram-positive and Gram-negative bacteria. Suitable HBC-Pepper dye pairs were identified that give blue, green, or red fluorescence signals in the E. coli, Bacillus subtilis, and Salmonella enterica serovar Typhimurium (S. Typhimurium). Furthermore, we found that different RNA scaffolds have a drastic effect on in vivo fluorescence, which did not correlate with the in vitro folding efficiency. One such scaffold termed DF30-tRNA displays 199-fold greater fluorescence than the Pepper aptamer alone and permits simultaneous dual color imaging in live cells.


Asunto(s)
Aptámeros de Nucleótidos , ARN , Escherichia coli/genética , Antibacterianos , Bacterias Gramnegativas/genética , Bacterias Grampositivas , Salmonella typhimurium/genética , Aptámeros de Nucleótidos/genética
7.
World J Microbiol Biotechnol ; 40(5): 159, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607454

RESUMEN

Gamma-aminobutyric acid (GABA) is a non-protein amino acid which is widely applied in agriculture and pharmaceutical additive industries. GABA is synthesized from glutamate through irreversible α-decarboxylation by glutamate decarboxylase. Recently, microbial synthesis has become an inevitable trend to produce GABA due to its sustainable characteristics. Therefore, reasonable microbial platform design and metabolic engineering strategies for improving production of GABA are arousing a considerable attraction. The strategies concentrate on microbial platform optimization, fermentation process optimization, rational metabolic engineering as key metabolic pathway modification, promoter optimization, site-directed mutagenesis, modular transporter engineering, and dynamic switch systems application. In this review, the microbial producers for GABA were summarized, including lactic acid bacteria, Corynebacterium glutamicum, and Escherichia coli, as well as the efficient strategies for optimizing them to improve the production of GABA.


Asunto(s)
Corynebacterium glutamicum , Ácido gamma-Aminobutírico , Agricultura , Corynebacterium glutamicum/genética , Industria Farmacéutica , Ingeniería , Escherichia coli/genética
8.
Proc Natl Acad Sci U S A ; 121(16): e2303165121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38607932

RESUMEN

Antimicrobial resistance was estimated to be associated with 4.95 million deaths worldwide in 2019. It is possible to frame the antimicrobial resistance problem as a feedback-control problem. If we could optimize this feedback-control problem and translate our findings to the clinic, we could slow, prevent, or reverse the development of high-level drug resistance. Prior work on this topic has relied on systems where the exact dynamics and parameters were known a priori. In this study, we extend this work using a reinforcement learning (RL) approach capable of learning effective drug cycling policies in a system defined by empirically measured fitness landscapes. Crucially, we show that it is possible to learn effective drug cycling policies despite the problems of noisy, limited, or delayed measurement. Given access to a panel of 15 [Formula: see text]-lactam antibiotics with which to treat the simulated Escherichia coli population, we demonstrate that RL agents outperform two naive treatment paradigms at minimizing the population fitness over time. We also show that RL agents approach the performance of the optimal drug cycling policy. Even when stochastic noise is introduced to the measurements of population fitness, we show that RL agents are capable of maintaining evolving populations at lower growth rates compared to controls. We further tested our approach in arbitrary fitness landscapes of up to 1,024 genotypes. We show that minimization of population fitness using drug cycles is not limited by increasing genome size. Our work represents a proof-of-concept for using AI to control complex evolutionary processes.


Asunto(s)
Antiinfecciosos , Aprendizaje , Refuerzo en Psicología , Farmacorresistencia Microbiana , Ciclismo , Escherichia coli/genética
9.
Emerg Microbes Infect ; 13(1): 2337678, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38629492

RESUMEN

Despite carbapenems not being used in animals, carbapenem-resistant Enterobacterales (CRE), particularly New Delhi metallo-ß-lactamase-producing CRE (NDM-CRE), are prevalent in livestock. Concurrently, the incidence of human infections caused by NDM-CRE is rising, particularly in children. Although a positive association between livestock production and human NDM-CRE infections at the national level was identified, the evidence of direct transmission of NDM originating from livestock to humans remains largely unknown. Here, we conducted a cross-sectional study in Chengdu, Sichuan Province, to examine the prevalence of NDM-CRE in chickens and pigs along the breeding-slaughtering-retail chains, in pork in cafeterias of schools, and in colonizations and infections from children's hospital and examined the correlation of NDM-CRE among animals, foods and humans. Overall, the blaNDM increases gradually along the chicken and pig breeding (4.70%/2.0%) -slaughtering (7.60%/22.40%) -retail (65.56%/34.26%) chains. The slaughterhouse has become a hotspot for cross-contamination and amplifier of blaNDM. Notably, 63.11% of pork from the school cafeteria was positive for blaNDM. The prevalence of blaNDM in intestinal and infection samples from children's hospitals was 21.68% and 19.80%, respectively. whole genome sequencing (WGS) analysis revealed the sporadic, not large-scale, clonal spread of NDM-CRE along the chicken and pig breeding-slaughtering-retail chain, with further spreading via IncX3-blaNDM plasmid within each stage of whole chains. Clonal transmission of NDM-CRE is predominant in children's hospitals. The IncX3-blaNDM plasmid was highly prevalent among animals and humans and accounted for 57.7% of Escherichia coli and 91.3% of Klebsiella pneumoniae. Attention should be directed towards the IncX3 plasmid to control the transmission of blaNDM between animals and humans.


Asunto(s)
Infecciones por Enterobacteriaceae , Enterobacteriaceae , Niño , Humanos , Animales , Porcinos , Enterobacteriaceae/genética , Estudios Transversales , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Pollos , Escherichia coli/genética , beta-Lactamasas/genética , Infecciones por Enterobacteriaceae/epidemiología , Infecciones por Enterobacteriaceae/veterinaria , Klebsiella pneumoniae/genética , Plásmidos
10.
BMC Microbiol ; 24(1): 136, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658819

RESUMEN

OBJECTIVES: In the recent years, multidrug resistant (MDR) neonatal septicemia-causing Enterobacterales has been dramatically increased due to the extended-spectrum beta-lactamases (ESBLs) and AmpC enzymes. This study aimed to assess the antibiotic resistance pattern, prevalence of ESBLs/AmpC beta-lactamase genes, and Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) fingerprints in Enterobacterales isolated from neonatal sepsis. RESULTS: In total, 59 Enterobacterales isolates including 41 (69.5%) Enterobacter species, 15 (25.4%) Klebsiella pneumoniae and 3 (5.1%) Escherichia coli were isolated respectively. Resistance to ceftazidime and cefotaxime was seen in all of isolates. Furthermore, all of them were multidrug-resistant (resistant to three different antibiotic categories). The phenotypic tests showed that 100% of isolates were ESBL-positive. Moreover, AmpC production was observed in 84.7% (n = 50/59) of isolates. Among 59 ESBL-positive isolates, the highest percentage belonged to blaCTX-M-15 gene (66.1%) followed by blaCTX-M (45.8%), blaCTX-M-14 (30.5%), blaSHV (28.8%), and blaTEM (13.6%). The frequency of blaDHA, blaEBC, blaMOX and blaCIT genes were 24%, 24%, 4%, and 2% respectively. ERIC-PCR analysis revealed that Enterobacterales isolates were genetically diverse. The remarkable prevalence of MDR Enterobacterales isolates carrying ESBL and AmpC beta-lactamase genes emphasizes that efficient surveillance measures are essential to avoid the more expansion of drug resistance amongst isolates.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Farmacorresistencia Bacteriana Múltiple , Infecciones por Enterobacteriaceae , Pruebas de Sensibilidad Microbiana , Sepsis Neonatal , beta-Lactamasas , beta-Lactamasas/genética , Humanos , Irán/epidemiología , Recién Nacido , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/epidemiología , Antibacterianos/farmacología , Prevalencia , Proteínas Bacterianas/genética , Sepsis Neonatal/microbiología , Sepsis Neonatal/epidemiología , Enterobacteriaceae/genética , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/enzimología , Enterobacteriaceae/aislamiento & purificación , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/aislamiento & purificación , Klebsiella pneumoniae/enzimología , Enterobacter/genética , Enterobacter/efectos de los fármacos , Enterobacter/aislamiento & purificación , Enterobacter/enzimología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación
11.
Sci Rep ; 14(1): 9141, 2024 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644371

RESUMEN

Tuberculosis remains a large health threat, despite the availability of the tuberculosis vaccine, BCG. As BCG efficacy gradually decreases from adolescence, BCG-Prime and antigen-booster may be an efficient strategy to confer vaccine efficacy. Mycobacterial DNA-binding protein 1 (MDP1, namely Rv2986c, hupB or HU) is a major Mycobacterium tuberculosis protein that induces vaccine-efficacy by co-administration with CpG DNA. To produce MDP1 for booster-vaccine use, we have created recombinant MDP1 produced in both Escherichia coli (eMDP1) and Mycolicibacterium smegmatis (mMDP1), an avirulent rapid-growing mycobacteria. We tested their immunogenicity by checking interferon (IFN)-gamma production by stimulated peripheral blood cells derived from BCG-vaccinated individuals. Similar to native M. tuberculosis MDP1, we observed that most lysin resides in the C-terminal half of mMDP1 are highly methylated. In contrast, eMDP1 had less post-translational modifications and IFN-gamma stimulation. mMDP1 stimulated the highest amount of IFN-gamma production among the examined native M. tuberculosis proteins including immunodominant MPT32 and Antigen 85 complex. MDP1-mediated IFN-gamma production was more strongly enhanced when combined with a new type of CpG DNA G9.1 than any other tested CpG DNAs. Taken together, these results suggest that the combination of mMDP1 and G9.1 possess high potential use for human booster vaccine against tuberculosis.


Asunto(s)
Vacuna BCG , Proteínas Bacterianas , Proteínas de Unión al ADN , Interferón gamma , Mycobacterium tuberculosis , Procesamiento Proteico-Postraduccional , Humanos , Interferón gamma/metabolismo , Proteínas Bacterianas/inmunología , Vacuna BCG/inmunología , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Mycobacterium tuberculosis/inmunología , Proteínas Recombinantes/inmunología , Oligodesoxirribonucleótidos/farmacología , Tuberculosis/prevención & control , Tuberculosis/inmunología , Islas de CpG , Mycobacterium smegmatis/inmunología , Mycobacterium smegmatis/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Femenino
12.
Sci Rep ; 14(1): 9159, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644372

RESUMEN

Different strains of Escherichia coli that exhibit genetic characteristics linked to diarrhea pose a major threat to both human and animal health. The purpose of this study was to determine the prevalence of pathogenic Escherichia coli (E. coli), the genetic linkages and routes of transmission between E. coli isolates from different animal species. The efficiency of disinfectants such as hydrogen peroxide (H2O2), Virkon®S, TH4+, nano zinc oxide (ZnO NPs), and H2O2-based zinc oxide nanoparticles (H2O2/ZnO NPs) against isolated strains of E. coli was evaluated. Using 100 fecal samples from different diarrheal species (cow n = 30, sheep n = 40, and broiler chicken n = 30) for E. coli isolation and identification using the entero-bacterial repetitive intergenic consensus (ERIC-PCR) fingerprinting technique. The E. coli properties isolated from several diarrheal species were examined for their pathogenicity in vitro. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), Fourier-transform infrared spectrum (FT-IR), X-ray diffraction (XRD), zeta potential, and particle size distribution were used for the synthesis and characterization of ZnO NPs and H2O2/ZnO NPs. The broth macro-dilution method was used to assess the effectiveness of disinfectants and disinfectant-based nanoparticles against E. coli strains. Regarding the results, the hemolytic activity and Congo red binding assays of pathogenic E. coli isolates were 55.3 and 44.7%, respectively. Eleven virulent E. coli isolates were typed into five ERIC-types (A1, A2, B1, B2, and B3) using the ERIC-PCR method. These types clustered into two main clusters (A and B) with 75% similarity. In conclusion, there was 90% similarity between the sheep samples' ERIC types A1 and A2. On the other hand, 89% of the ERIC types B1, B2, and B3 of cows and poultry samples were comparable. The H2O2/ZnO NPs composite exhibits potential antibacterial action against E. coli isolates at 0.04 mg/ml after 120 min of exposure.


Asunto(s)
Pollos , Diarrea , Desinfectantes , Infecciones por Escherichia coli , Escherichia coli , Peróxido de Hidrógeno , Óxido de Zinc , Animales , Óxido de Zinc/farmacología , Óxido de Zinc/química , Peróxido de Hidrógeno/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Diarrea/microbiología , Diarrea/veterinaria , Pollos/microbiología , Desinfectantes/farmacología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Ovinos , Bovinos , Nanopartículas/química , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , Heces/microbiología , Nanopartículas del Metal/química
13.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 330-336, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38645872

RESUMEN

Objective: To express the protein enconded by the Rv3432c gene of Mycobacterium tuberculosis (M.tb) in vitro by prokaryotic expression, to analyze the structure of the Rv3432c protein by using bioinformatics software, and to explore for new drug targets against M.tb. Methods: The Rv3432c gene was amplified by PCR using the genomic DNA of the inactivated M.tb strain H37Rv as the template and a recombinant plasmid was constructed with the expression vector pET-28a. The expression products were analyzed by SDS-PAGE and purified using affinity chromatography. The biological properties of Rv3432c were analyzed with Protparam, the Pfam online tool, SOMPA, Protscale, TMHMM Signalp 6.0, NetPhos3.1, SUMOsp 2.0, and SWISS-MODEL. Results: pET-28a-Rv3432c recombinant plasmid sequencing results were fully consistent with those of the target gene. SDS-PAGE analysis showed that the fusion protein existed in the form of a soluble protein with a relative molecular mass of about 55×103, which matched the expected size. ProtParam analysis showed that the Rv3432c protein was hydrophilic (showing a GRAVY value of -0.079). Rv3432c was a protein with no transmembrane structural domains or signal peptide. The secondary structure of Rv3432c mainly consisted of random coils (39.78%) and α-helix (39.57%) and was relatively loosely structured. Conclusion: We successfully constructed a prokaryotic expression plasmid of the Rv3432c protein and analyzed its structure using bioinformatics, laying the foundation for further research on the role of Rv3432c in the pathogenesis and progression of tuberculosis as well as the identification of new drug targets against M.tb.


Asunto(s)
Proteínas Bacterianas , Biología Computacional , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Biología Computacional/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Plásmidos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Vectores Genéticos , Clonación Molecular
14.
BMC Bioinformatics ; 25(1): 161, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38649836

RESUMEN

BACKGROUND: Taxonomic classification of reads obtained by metagenomic sequencing is often a first step for understanding a microbial community, but correctly assigning sequencing reads to the strain or sub-species level has remained a challenging computational problem. RESULTS: We introduce Mora, a MetagenOmic read Re-Assignment algorithm capable of assigning short and long metagenomic reads with high precision, even at the strain level. Mora is able to accurately re-assign reads by first estimating abundances through an expectation-maximization algorithm and then utilizing abundance information to re-assign query reads. The key idea behind Mora is to maximize read re-assignment qualities while simultaneously minimizing the difference from estimated abundance levels, allowing Mora to avoid over assigning reads to the same genomes. On simulated diverse reads, this allows Mora to achieve F1 scores comparable to other algorithms while having less runtime. However, Mora significantly outshines other algorithms on very similar reads. We show that the high penalty of over assigning reads to a common reference genome allows Mora to accurately infer correct strains for real data in the form of E. coli reads. CONCLUSIONS: Mora is a fast and accurate read re-assignment algorithm that is modularized, allowing it to be incorporated into general metagenomics and genomics workflows. It is freely available at https://github.com/AfZheng126/MORA .


Asunto(s)
Algoritmos , Metagenómica , Metagenómica/métodos , Escherichia coli/genética , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Metagenoma/genética , Genoma Bacteriano
15.
Biosensors (Basel) ; 14(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38667187

RESUMEN

Antimicrobial-resistant (AMR) bacteria pose a significant global health threat, and bacteria that produce New Delhi metallo-ß-lactamase (NDM) are particularly concerning due to their resistance to most ß-lactam antibiotics, including carbapenems. The emergence and spread of NDM-producing genes in food-producing animals highlight the need for a fast and accurate method for detecting AMR bacteria. We therefore propose a PCR-coupled CRISPR/Cas12a-based fluorescence assay that can detect NDM-producing genes (blaNDM) in bacteria. Thanks to its designed gRNA, this CRISPR/Cas12a system was able to simultaneously cleave PCR amplicons and ssDNA-FQ reporters, generating fluorescence signals. Our method was found to be highly specific when tested against other foodborne pathogens that do not carry blaNDM and also demonstrated an excellent capability to distinguish single-nucleotide polymorphism. In the case of blaNDM-1 carrying E. coli, the assay performed exceptionally well, with a detection limit of 2.7 × 100 CFU/mL: 100 times better than conventional PCR with gel electrophoresis. Moreover, the developed assay detected AMR bacteria in food samples and exhibited enhanced performance compared to previously published real-time PCR assays. Thus, this novel PCR-coupled CRISPR/Cas12a-based fluorescence assay has considerable potential to improve current approaches to AMR gene detection and thereby contribute to mitigating the global threat of AMR.


Asunto(s)
Proteínas Bacterianas , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Carbapenémicos , Endodesoxirribonucleasas , beta-Lactamasas , Carbapenémicos/farmacología , beta-Lactamasas/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Enterobacteriaceae/genética , Enterobacteriaceae/efectos de los fármacos , Antibacterianos/farmacología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Técnicas Biosensibles , Farmacorresistencia Bacteriana/genética
16.
Toxins (Basel) ; 16(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38668602

RESUMEN

Patulin contamination has become a bottleneck problem in the safe production of fruit products, although biodegradation technology shows potential application value in patulin control. In the present study, the patulin biodegradation mechanism in a probiotic yeast, Pichia guilliermondii S15-8, was investigated. Firstly, the short-chain dehydrogenase PgSDR encoded by gene A5D9S1 was identified as a patulin degradation enzyme, through RNA sequencing and verification by qRT-PCR. Subsequently, the exogenous expression system of the degradation protein PgSDR-A5D9S1 in E. coli was successfully constructed and demonstrated a more significant patulin tolerance and degradation ability. Furthermore, the structure of PgSDR-A5D9S1 and its active binding sites with patulin were predicted via molecular docking analysis. In addition, the heat-excited protein HSF1 was predicted as the transcription factor regulating the patulin degradation protein PgSDR-A5D9S1, which may provide clues for the further analysis of the molecular regulation mechanism of patulin degradation. This study provides a theoretical basis and technical support for the industrial application of biodegradable functional strains.


Asunto(s)
Biodegradación Ambiental , Patulina , Pichia , Patulina/metabolismo , Pichia/metabolismo , Pichia/genética , Simulación del Acoplamiento Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
17.
Microb Genom ; 10(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38668652

RESUMEN

Accurate annotation to single-nucleotide resolution of the transcribed regions in genomes is key to optimally analyse RNA-seq data, understand regulatory events and for the design of experiments. However, currently most genome annotations provided by GenBank generally lack information about untranslated regions. Additionally, information regarding genomic locations of non-coding RNAs, such as sRNAs, or anti-sense RNAs is frequently missing. To provide such information, diverse RNA-seq technologies, such as Rend-seq, have been developed and applied to many bacterial species. However, incorporating this vast amount of information into annotation files has been limited and is bioinformatically challenging, resulting in UTRs and other non-coding elements being overlooked or misrepresented. To overcome this problem, we present pyRAP (python Rend-seq Annotation Pipeline), a software package that analyses Rend-seq datasets to accurately resolve transcript boundaries genome-wide. We report the use of pyRAP to find novel transcripts, transcript isoforms, and RNase-dependent sRNA processing events. In Bacillus subtilis we uncovered 63 novel transcripts and provide genomic coordinates with single-nucleotide resolution for 2218 5'UTRs, 1864 3'UTRs and 161 non-coding RNAs. In Escherichia coli, we report 117 novel transcripts, 2429 5'UTRs, 1619 3'UTRs and 91 non-coding RNAs, and in Staphylococcus aureus, 16 novel transcripts, 664 5'UTRs, 696 3'UTRs, and 81 non-coding RNAs. Finally, we use pyRAP to produce updated annotation files for B. subtilis 168, E. coli K-12 MG1655, and S. aureus 8325 for use in the wider microbial genomics research community.


Asunto(s)
Bacillus subtilis , Genoma Bacteriano , Anotación de Secuencia Molecular , Programas Informáticos , Bacillus subtilis/genética , Escherichia coli/genética , ARN Bacteriano/genética , Staphylococcus aureus/genética , Biología Computacional/métodos , Análisis de Secuencia de ARN/métodos , RNA-Seq/métodos
18.
Methods Mol Biol ; 2757: 269-287, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38668972

RESUMEN

Light-sensitive Ca2+-regulated photoproteins of ctenophores are single-chain polypeptide proteins of 206-208 amino acids in length comprising three canonical EF-hand Ca2+-binding sites, each of 12 contiguous residues. These photoproteins are a stable complex of apoprotein and 2-hydroperoxy adduct of coelenterazine. Addition of calcium ions to photoprotein is only required to trigger bright bioluminescence. However, in contrast to the related Ca2+-regulated photoproteins of jellyfish their capacity to bioluminescence disappears on exposure to light over the entire absorption spectral range of ctenophore photoproteins. Here, we describe protocols for expression of gene encoding ctenophore photoprotein in Escherichia coli cells, obtaining of the recombinant apoprotein of high purity and its conversion into active photoprotein with synthetic coelenterazine as well as determination of its sensitivity to calcium ions using light-sensitive Ca2+-regulated photoprotein berovin from ctenophore Beroe abyssicola as an illustrative case.


Asunto(s)
Calcio , Ctenóforos , Escherichia coli , Imidazoles , Proteínas Luminiscentes , Ctenóforos/genética , Ctenóforos/metabolismo , Calcio/metabolismo , Animales , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Expresión Génica , Clonación Molecular/métodos , Pirazinas/metabolismo
19.
Methods Mol Biol ; 2757: 289-306, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38668973

RESUMEN

The functional screening of cDNA libraries (or functional cloning) enables isolation of cDNA genes encoding novel proteins with unknown amino acid sequences. This approach is the only way to identify a protein sequence in the event of shortage of biological material for obtaining pure target protein in amounts sufficient to determine its primary structure, since sensitive functional test for a target protein is only required to successfully perform functional cloning. Commonly, bioluminescent proteins from representatives belonging to different taxa significantly differ in sequences due to independent origin of bioluminescent systems during evolution. Nonetheless, these proteins are frequently similar in functions and can use even the same substrate of bioluminescence reaction, allowing the use of the same functional test for screening. The cDNA genes encoding unknown light-emitting proteins can be identified during functional screening with high sensitivity, which is provided by modern light recording equipment making possible the detection of a very small amount of a target protein. Here, we present the protocols for isolation of full-size cDNA genes for the novel bioluminescent protein family of light-sensitive Ca2+-regulated photoproteins in the absence of any sequence information by functional screening of plasmid cDNA expression library. The protocols describe all the steps from gathering animals to isolation of individual E. coli colonies carrying full-size cDNA genes using photoprotein berovin from ctenophore Beroe abyssicola as an illustrative example.


Asunto(s)
Clonación Molecular , Ctenóforos , ADN Complementario , Biblioteca de Genes , Proteínas Luminiscentes , Animales , Ctenóforos/genética , Ctenóforos/metabolismo , Clonación Molecular/métodos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , ADN Complementario/genética , Escherichia coli/genética , Escherichia coli/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-38573823

RESUMEN

Escherichia coli were engineered to selectively adsorb and recover lithium from the environment by employing a bacterial cell surface display strategy. Lithium binding peptide (LBP1) was integrated into the Escherichia coli membrane protein OmpC. The effect of environmental conditions on the adsorption of lithium by a recombinant strain was evaluated, and lithium particles on the cellular surface were analyzed by FE-SEM and XRD. To elevate the lithium adsorption, dimeric, trimeric, and tetrameric repeats of the LBP1 peptide were constructed and displayed on the surface of E. coli. The constructed recombinant E. coli displaying the LBP1 trimer was applied to real industrial lithium battery wastewater to recover lithium.


Asunto(s)
Escherichia coli , Litio , Porinas , Escherichia coli/genética , Escherichia coli/metabolismo , Adsorción , Residuos Industriales , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Aguas Residuales/microbiología , Suministros de Energía Eléctrica , Técnicas de Visualización de Superficie Celular , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...